CRC News & Highlights

TUM and Clariant renew Strategic Partnership on Catalysis Research

The Technical University of Munich (TUM) and the chemical company Clariant will continue their successful partnership of ten years in the area of catalysis research. TUM President Prof. Thomas F. Hofmann and Clariant Catalysts Head of Research and Development Marvin Estenfelder signed a corresponding agreement in Munich extending the Munich Catalysis Alliance (MuniCat) until 2033. The partners will jointly develop even more efficient and more sustainable catalysts for the chemical industry.

This is a very important and exciting development for the Catalysis Research Center - being the hub for catalysis research at TUM - and we are looking forward to many successful joint projects with Clariant within the next ten years.

Link to official TUM announcement


Announcement of the Recipients of the 2022 and 2023 Dr. Karl Wamsler Innovation Award

The TUM proudly announces the 2022 and 2023 awardees of the Dr. Karl Wamsler Innovation Award (KWIA). The awards go to Matthew J. Gaunt, University of Cambridge, and to Veronique van Speybroeck, University of Ghent.

Matthew J. Gaunt is holder of the Yusuf Hamied 1702 Chair of Chemistry at the University of Cambridge. He received the 2022 Dr. Karl Wamsler Innovation Award “for his contributions to the field of synthetic organic chemistry and homogeneous catalysis, especially visible light-mediated photoredox catalysis and photochemistry”.

Veronique van Speybroeck is full professor at Ghent University and director/co-founder of the Center for Molecular Modeling (CMM). She receives the 2023 Dr. Karl Wamsler Innovation Award “for her contributions to modeling nanoporous materials for catalysis and simulating complex chemical transformations at operating conditions”.

The KWIA is presented by the TUM and the chemicals company Clariant to promote excellent performance in the field of catalysis, including bio-catalysis and White Biotechnology. The award is named after Dr. Karl Wamsler who died in 2016. Wamsler was one of the most important and formative figures in post-war German chemistry. He was also a generous patron when it came to supporting science and the arts and was named TUM Honorary Senator in 2015. The award was introduced in 2017 and carries a monetary award of 50,000 euros.

The Dr. Karl Wamsler Innovation Award Symposium 2022 – Advancing Catalysis Science

The CRC is happy to announce the Dr. Karl Wamsler Innovation Award Symposium 2023: Advancing Catalysis Science honoring the awardees Matthew J. Gaunt (Univ. Cambridge) and Veronique van Speybroeck (Ghent Univ.).
The symposium will take place on Thursday, November 9th 2023 at 2:00 pm in the Auditorium of the TUM Institute for Advanced Study, Lichtenbergstraße 2a, 85747 Garching bei München. See the full program for details.

CRC Associated Researcher Golo Storch wins ERC Starting Grant 2023

Congratulations to Dr. Golo Storch for winning one of the prestigous ERC Starting Grants 2023. Starting Grants are intended for scientists who are still in the early phases of their careers. The Grants are endowed with as much as 1.5 million euros.

Reduction reactions play a major role in many processes in the chemical industry. Here the transfer of electrons results in the transformation of a raw material into the desired product. In organic chemistry the high reduction potential necessary for this process is usually taken from metals such as sodium, potassium or lithium, which are difficult to produce. In the ERC project "Artificial Catalysts for Endergonic Reduction by Electron Bifurcation", BifurCAT, Dr. Golo Storch and his team are applying a trick found in nature to make this kind of reaction possible with less effort. They are following the example of enzymes where what is called electron bifurcation takes place. At a reaction center of the enzyme two electrons from a molecule are transferred to the catalyst. Then the central step takes place: The two electrons are spatially separated in the catalyst. Here some of the energy of one of the electrons is transferred to the other, so that instead of two electrons with the same energy level, one electron with a higher reduction potential and one with a lower reduction potential result. This higher reduction potential can then be used for the desired reduction. Should the team succeed in realizing this process in the laboratory for the first time, it would be possible to utilize substances such as ascorbic acid or formic acid, which exist in large quantities, as energy sources for demanding reduction reactions.

CRC PI Jennifer Strunk elected for the GDCh Board of Directors

Congratulations to our newest member of the CRC PI community, Jennifer Strunk, for being elected to the Board of Directors of the Gesellschaft Deutscher Chemiker (GDCh) with the second most votes in academia! 

Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation

Waste management of polyethylene and polypropylene remains a major challenge as heating to high temperatures to crack the underlying C–C bonds is energy intensive. Lercher, Zhang, Liu et al. report in Science that aluminum chloride–based ionic liquid medium promotes the breakdown of these polyolefin plastics into liquid fuels at temperatures below 100°C. The energy released from alkylation reactions among the resulting intermediates compensates for the energy directed toward bond scission.

CRC Talk by Jin-Hyo Boo

The CRC is happy to announce a presentation by Jin-Hyo Boo from the Sungkyunkwan University in Suwon, Korea. The title of the presentation is:

Development of the New Photocatalysts for Environment and Energy Applications

(link to the abstract)

The presentation will take place on Monday, June 13th at 2:00 pm sharp in the Department of Chemistry, seminar room CH 56210 (‘orange’ building, 5th floor, north wing).

Professor Boo’s research is focused on the application of materials science and technology through the basics of surface science under the slogan “From Surface Science to Materials Science and Technology”. The main objective is to produce functional thin films using chemical vapor deposition (CVD) and physical vapor deposition (PVD) and to elucidate the thin film growth mechanism and to study the most important, essential and reproducible thin film manufacturing processes and physical and surface properties for industrial use, e.g., for semiconductors & displays (OTFTs, OLEDs), energy-related applications (solar cells, smart windows, photocatalysts), and bio plasma & sensing devices.

The Dr. Karl Wamsler Innovation Award Symposium 2022 – Advancing Catalysis Science

The CRC is happy to announce the Dr. Karl Wamsler Innovation Award Symposium 2022: Advancing Catalysis Science honoring the awardees Yang-Shao Horn (MIT) and Kyoko Nozaki (Univ. Tokyo).
The symposium will take place on Wednesday, May 25th 2022 at 2:00 pm in hybrid format. i.e. in the Auditorium of the TUM Institute for Advanced Study, Lichtenbergstraße 2a, 85747 Garching bei München and via zoom:

Passcode: 139294

Prof. Shao-Horn will give an overview of her research in a presentation titled 
“Towards Net Zero"

Prof. Kyoko Nozaki will give an overview of her research in a presentation titled
“Catalysts toward More Sustainable Chemical Synthesis”

Cathleen Zeymer and Laerte Patera receive ERC Starting Grants

Congratulations to Cathleen Zeymer and Laerte Patera, Associated Researchers at the CRC, for both having received an ERC Starting Grant! The ERC Starting Grants are Europe's most prestigeous funding source for young researchers at the start of their independent academic careers.

With her project "Artificial Lanthanide Enzymes for Selective Photocatalysis" (PhotoLanZyme) Cathleen Zeymer wants to develop artificial enzymes for reactions that go beyond the nature’s synthetic  repertoire. Her team targets the synthesis of a new class of sustainable photocatalysts whose chiral environment enables stereoselective transformations In an evolutionary process, starting from simple proteins with lanthanide ions in their active site. 

Laerte Patera's research interest is the artificial photosynthesis, which could make a decisive contribution to the portfolio of renewable energy sources, if the atomic-scale mechanisms were known precisely. With his project "Watching Excitons in Photoactive Organic Frameworks" (WEPOF), he aims at filling these gaps. He wants to develop microscopic methods with which the excited states generated by light in organic energy materials can be observed directly to be able to develop new, more efficient materials from the knowledge of the structure-function relationships.

Johannes A. Lercher elected as member of acatech

Congratulations to Johannes A. Lercher for being elected as member of the National Academy of Science and Engineering - acatech! At this year's meeting on October 19th, 2021, the members of acatech elected a total of 22 scientists to join their ranks. The election is both an award for their academic achievements and an honorary mandate: the academy, funded by the federal and state governments, advises politics and society on technology-related issues.

The National Academy of Science and Engineering - acatech - is the voice of the technological sciences at home and abroad. It provides advice on strategic engineering and technology policy issues to policymakers and the public, giving effective support for policymaking in the field of innovation. acatech is funded by the German Federal Government and the Federal States. acatech provides effective structures for the science-based discussion of strategic technology issues. Experts from science, industry and civil society develop evidence-based proposals as input for the public and policy debate. The themes covered range from resources and the energy supply to technological developments, securing the supply of qualified specialists and technology communication.

CRC Distinguished Lecturer Series talk by Yang Shao-Horn

The TUM CRC Distinguished Lecturer Series continues on September 30th, 2021 at 4:00 pm via Zoom, featuring Prof. Yang Shao-Horn (Massachusetts Institute of Technology), who will present an overview of her research activities in the fields of electrocatalysis and energy storage. If you are interested in joining the lecture, send a request to to get the login data.

Her research is centered on exploiting chemical/materials physics to understand and control kinetics and dynamics at interface and in bulk for energy storage and making of sustainable fuels and chemicals. Such fundamental understanding is used to design processes and materials for applications including Li-ion batteries, metal-air batteries, water splitting, CO2 reduction and N2 reduction.

Professor Shao-Horn is the recipient of the Dr. Karl Wamsler Innovation Award 2020 and most recently, she received the Alexander-von-Humboldt Research Award.

For more information see Prof. Yang Shao-Horn's webpage.

New DFG Transregional Collaborative Research Center Established at the CRC

The German Research Foundation DFG has decided to fund a new Transregional Collaborative Research Center (TRR) between catalysis researchers from TUM CRC and the University of Regensburg. Under the spokepersonship of Thorsten Bach, the TRR 325 “Assembly Controlled Chemical Photocatalysis” aims to develop a new generation of photocatalytic systems for organic synthesis by controlling the interactions between the catalyst and its reaction partners. In the long term, it seeks to contribute to achieving greater savings of energy and resources in light-driven reactions.

Official TUM press release

Collaboration of CRC PIs: Elucidating mechanistic investigations of an organometallic electrocatalyst

The recent collaboration between PIs of the e-conversion Cluster of Excellence shows the great potential of integrated institutes such as the CRC. By combining the ligand design and inorganic synthesis savoir faire of the team of Corinna Hess with the expertise in electrochemistry and theory of the groups of Hubert Gasteiger and Regina de Vivie-Riedle (LMU), insights into the dihydrogen evolution from the molecular electrocatalyst Co-Mabiq are offered, as shown in their recent publication in Inorganic Chemistry.

Johannes A. Lercher is awarded with the renowned Alwin Mittasch Prize

The German Catalysis Society (GeCatS) awards Johannes A. Lercher with the prestigious 2021 Alwin Mittasch Prize  for the development and understanding of solid catalysts in order to exploit new sources of raw materials. His distinguished scientific work on fundamental understanding of catalysts and catalytic processes for the synthesis of energy carriers and chemical intermediates is honored with 10.000€. Based on the characterization of catalysts and their active sites, using state-of-the-art physicochemical methods, Johannes A. Lercher develops novel catalysts that enable a better exploitation of chemical potentials along the reaction pathway. Studies on changes of the catalyst over its life cycle also allow the identification of the ideal operating state and its limits for industrial processes.

Shigeyoshi Inoue receives the prestigeous ERC Consolidator Grant

Shigeyoshi Inoue is awarded with the ERC Consolidator Grant for his ALLOWE project on highly reactive low-valent aluminum complexes and their application in synthesis and catalysis. These compounds are highly reactive and therefore of great interest for chemical synthesis and catalysis. They could represent an inexpensive, sustainable and non-toxic alternative to industrial chemical processes currently based on transition metals.

Offical TUM press release

Silvia Bordiga and Unni Olsbye are awarded with the TUM Wilhelm Manchot Professorship

The Manchot Foundation awards Prof. Silvia Bordiga (University of Turin) and Prof. Unni Olsbye (University of Oslo) with the 2019 Wilhelm Manchot Professorship for their contributions in catalysis research. Due to the COVID-19 situation, the award ceremony will take place in early 2021.

Silvia Bordiga uses spectroscopic methods in order to achieve a detailed understanding of the physicochemical nature of a large variety of nanostructured high surface area materials that find applications as heterogeneous catalysts, and to describe the structure and the number of the active sites; the reaction mechanisms; the origin of catalysts deactivationvia laboratory spectroscopies and advanced techniques available at the synchrotron beam lines in controlled atmosphere.

Unni Olsbye’s research interests are directed towards structure-composition-function correlations in catalytic reactions, such as methanol to hydrocarbons, methane partial oxidation to methanol and to syngas, light alkane dehydrogenation, methyl halide conversion, ethene oxychlorination, and CO2 conversion. The emphasis is set on mechanistic studies of target- and by-product formation, as well as studies of the influence of confinement effects in micro- and nanoporous materials.

The TUM Manchot Professorship has been awarded since 1991, commemorating the chemist Wilhelm Manchot, who has been professor and director of the Institute of Inorganic Chemistry at the Technische Hochschule München (now TUM) from 1914 to 1935. The Manchot Foundation traditionally invites the award recipients to lecture at the TUM Department of Chemistry.

Announcement & Schedule for the award ceremony

Highly dynamic structural changes at the surface of copper electrocatalysts

The team of Karsten Reuter has found highly dynamic structural changes at the surface of working copper electrocatalysts. These changes turn out to be key to the high performance and could be a design target for future improved catalysts for splitting water into hydrogen or producing synthetic fuels. Unfortunately, presently these catalysts often consist of rare elements such as platinum or iridium, which are either very expensive to obtain or not available in the quantities needed for a global energy supply. Therefore, catalysis research is looking for more abundant alternatives.

In their work published in Nature Catalysis, the teams of Julia Kunze-Liebhäuser (University of Innsbruck) and Karsten Reuter show that during the electrooxidation reaction of carbon monoxide (CO)  copper catalysts have their own solution to this problem. CO is an intermediate product that is produced during the conversion of fuels in fuel cells. To prevent the fuel cell from being poisoned, it must be disposed of through the electrooxidation reaction. During the reaction, the scientists observed that the copper surface is continuously converted and that small islands consisting of a few copper atoms are continuously formed. The charge of adsorbing ions gets stored in these protruding, nanometer-sized clusters. In the studied electrooxidation reaction in the used alkaline electrolyte this is especially the charge of the involved hydroxide (OH-) ions. This leads to fundamentally different binding properties to the catalyst than for the neutral reaction partner CO. The hydroxide ions are bound weaker, the CO stronger - exactly the mixture required for the observed high catalytic activity.

Hydrochloric acid treatment improves catalysts for removing sulfur from crude oil

The team of Johannes Lercher has developed a synthesis process which drastically increases the activity of catalysts for the desulfurization of crude oil. The new process could perhaps also be used for catalysts in fuel cells.

For more information see the TUM press release, as well as Prof. Lercher's webpage.

Online TUM-JST symposium „Catalysis Science – Quo Vadis” on July 27-28, 2020

The symposium “Catalysis Science – Quo Vadis” for early and mid-career scientists from Japan and Europe took place as an online webinar on July 27-28, 2020. Organized by Roland Fischer, Director of the CRC  and Hiroshi Kitagawa (Kyoto University), Supervisor of the PRESTO (Precursory Research for Embryonic Science and Technology) Innocat program of the Japan Science and Technology Agency (JST), the symposium aimed to connect 19 emerging leaders in catalysis science from Japan with a matching selection of 20 early and mid-career scientists from Europe, with the purpose to get together, find common research interests and to build a transcontinental network.

Owing to the current COVID-19 situation, the scientists presented their research online, but in an unconventional way of tandem presentations. The core idea of this style was to form duets of Japanese and European researchers who would cross-present each other’s research in a flash talk of 5-10 min in total. This format promoted exchanging and discussion with the partner before the symposium and highlighted each other’s work and scientific contributions in a nice way. The Book of Abstracts of all participants is found here.

In the symposium, a wide variety of cutting-edge topics of catalysis science were introduced and discussed. The Chairmen Fischer and Kitagawa gave a message with positive expectation in the closing remarks, “We hope that this symposium will be a foothold to build an international network, and successfully lead to joint research. Furthermore, we are looking forward to meet again on the real CSQV conference after the COVID-19 will converge.”

Shigeyoshi Inoue receives the DFG Eugen and Ilse Seibold Prize

Shigeyoshi Inoue is one of four researchers who receive the Eugen and Ilse Seibold Prize 2020 for his contributions to both academic and cultural exchange between Germany and Japan.

For more information see the official DFG presse release and Prof. Inoue's webpage.

Roland A. Fischer receives funding from the Reinhart-Koselleck program of the DFG

Roland A. Fischer has been awarded with funding by the prestigeous Reinhart-Koselleck program of the German Research Foundation (DFG). The project "Living Libraries of Intermetallic Superatoms - LIBRIS" aims at the synthesis of catalytically active intermetallic clusters in the sub-nanometer range, with special regards to control over formation growth and composition of such clusters.

For more information, see:

"Superatoms as Catalysts" - the official TUM press release

Information on the Reinhart-Koselleck program of the DFG

Webpage of the Fischer group and twitter account

Thorsten Bach recieves the DFG Gottfried Wilhelm Leibniz Award 2020

The German Research Foundation (DFG) recognizes his groud-breaking research on organic photochemistry with particular emphasis on light-induced enantioselective catalysis.

For more information, see the links:

The official DFG press release

The webpage of the TUM Department of Chemistry

The Bach webpage and twitter account

Directed synthesis of a complex metal oxide with high activity

Design of highly active Mo-V-Te-Nb oxide catalyst for ODH is made possible by understanding the formation of active surfaces

MoVTeNb oxide catalysts are used for ethylene production via ethane oxidative dehydrogenation (ODH). Maricruz Sanchez-Sanchez and Johannes A. Lercher at the CRC work on the optimization of this type of materials for an industrial application, in collaboration with Clariant AG in the frame of the MuniCat alliance.

In situ electron microscopy studies at the Pacific Northwest National Laboratory in collaboration with Nigel Browning and Yuanyuan Zhu have yielded the atomic description of the active surface of a metal oxide catalyst and its dynamic response under reaction conditions. These studies, combined with reaction kinetics measured at the CRC, provided a direct relationship between the atomic configuration of the surface of an oxide and its catalytic activity. This level of understanding has enabled the researchers to design a new synthetic approach that proved successful in generating highly active metal oxides. This work has been published in September 2019 in Nature Communications.

Collaborative CRC work on ultrasmall Pt clusters for the ORR

Ultrasmall Pt clusters derived from Pt@MOF materials for the oxygen reduction

The electrocatalytic oxygen reduction (ORR) using a platinum catalyst is considered as the key to many energy applications, such as fuel cell technologies. In a joint effort the teams of Aliaksandr Bandarenka, Roland A. Fischer and Sebastian Günther from the CRC, Alessio Gagliardi from the TUM Department of Electrical and Computer Engineering, and Jan Macák from the CEITEC in Brno (Czech Republic) have achieved a breakthrough in preparing ultrasmall Pt clusters with optimal size for the efficient electrocatalytic ORR in proton-exchange-membrane fuel cells by combining theory and experiment. The results were published online on June 5, 2019 in Angewandte Chemie International Edition.

By utilizing a simple computational model, the mass activity of Pt clusters for ORR was predicted. The forecasted activities were affirmed with the experimental results for 1.1 nm sized Pt clusters, which were obtained by decomposition of Pt clusters embedded in the zeolitic imidazolate framework ZIF-8. The obteined Pt clusters exhibit a mass activity of 0.87 A mgPt-1 , which is one of the highest mass activities reported to date.