Katharina Krischer
(Photo-)Electrocatalysis for Solar Fuel Generation
Our research aims at designing and optimizing nanostructured electrode surfaces for the electrochemical or photoelectrochemical conversion of water and CO2 to fuels and higher-value chemicals. The focus is on fundamental investigations of the physical properties of the laterally structured electrified interfaces and the relation of these properties to the electrocatalytic activity of the patterned electrodes. Current examples include metal/insulator/semiconductor (MIS) structures and plasmonically active surface modifications for plasmonic catalysis.
Key publications:
Lateral silicon oxide/gold interfaces enhance the rate of electrochemical hydrogen evolution reaction in alkaline media, T. L. Maier, M. Golibrzuch, S. Mendisch, W. Schindler, M. Becherer, K. Krischer, J. Chem. Phys. 2020, 152, 154705.
Coupled Dynamics of Anode and Cathode in Proton-Exchange Membrane Fuel Cells, J. Nogueira, K. Krischer, H. Varela, ChemPhysChem 2019, 20, 3081–3088.
The True Fate of Pyridinium in the Reportedly Pyridinium-Catalyzed Carbon Dioxide Electroreduction on Platinum, P. Y. Olu, O. Li, K. Krischer, Angew. Chem. Int. Ed. 2018, 57, 14769–14772.
Photoelectrochemical reactivity of well-defined mesoscale gold arrays on SiO2/Si substrates in CO2-saturated aqueous electrolyte, S. Filser, T. L. Maier, R. D. Nagel, W. Schindler, P. Lugli, M. Becherer, K. Krischer, Electrochim. Acta 2018, 268, 546–553.
Nanoimprint methods for the fabrication of macroscopic plasmonically active metal nanostructures, R. D. Nagel, S. Filser, T. Zhang, A. Manzi, K. Schönleber, J. Lindsly, J. Zimmermann, T. Maier, G. Scarpa, K. Krischer, P. Lugli, J. Appl. Phys. 2017, 121, 084305.