Marc Ledendecker
Energy Materials for a Sustainable Future
How can new material concepts enrich both established and emerging technologies to reduce our ecological footprint? Our research addresses this question and develops new catalyst concepts for the global energy transition. We focus on electrochemical reactions, which are becoming increasingly important in processes such as water electrolysis, electrochemical CO2 reduction, or hydrogen fuel cells. A particular concern is extending the technical lifespan of our catalysts. In this regard, we employ automated characterization methods to rapidly and precisely evaluate catalysts. Based on these results, the catalysts are iteratively improved in a feedback loop.
Key publications:
Size-Controlled Synthesis of IrO2 Nanoparticles at High Temperatures for the Oxygen Evolution Reaction, M. Malinovic,* P. Paciok, E. Shanli Koh, M. Geuß, J. Choi, P. Pfeifer, J. P. Hofmann, D. Göhl, M. Heggen, S. Cherevko, M. Ledendecker,* Adv. Energy Mater. 2023, 13(28), 2301450.
Catalyst Stability in Aqueous Electrochemistry, E. Kolle-Görgen, G. Fortunato,* M. Ledendecker,* Chem. Mater. 2022, 34(23), 10223–10236.
Towards a realistic prediction of catalyst durability from liquid half-cell tests, T. Imhof,* R. K. F. Della Bella, B. M. Stühmeier, H. A. Gasteiger, M. Ledendecker,* Phys. Chem. Chem. Phys. 2023, 25(30), 20533–20545.
Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study, G. V. Fortunato, E. Pizzutilo, I. Katsounaros, D. Göhl, R. J. Lewis, K. J. J. Mayrhofer, G. J. Hutchings, S. J. Freakley,* M. Ledendecker,* Nat. Commun. 2022, 13, 1973.
Engineering stable electrocatalysts by synergistic stabilization between carbide cores and Pt shells, D. Göhl, A. Garg, P. Paciok, K. J. J. Mayrhofer, M. Heggen, Y. Shao-Horn, R. E. Dunin-Borkowski, Y. Román-Leshkov,* M. Ledendecker,* Nat. Mater. 2020, 19(3), 287–291.